If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+86x+12=0
a = 1; b = 86; c = +12;
Δ = b2-4ac
Δ = 862-4·1·12
Δ = 7348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7348}=\sqrt{4*1837}=\sqrt{4}*\sqrt{1837}=2\sqrt{1837}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(86)-2\sqrt{1837}}{2*1}=\frac{-86-2\sqrt{1837}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(86)+2\sqrt{1837}}{2*1}=\frac{-86+2\sqrt{1837}}{2} $
| 2(5x+5)=-26+6 | | 3y+2=7y | | t/6+12=16 | | 6n-3=42 | | 4+u=9 | | 5x+3=-3x-7 | | 2x+20=9x+41 | | H=4.9t^2+11t+1.5 | | 3(x-5)=5x-1x(3-x) | | b+3/3= 2 | | 8b+4=4(8b+7) | | x4=7 | | 0.75(x+40)=0.35(x+20)+0.36 | | x^2*(0,03+0,05*x)=3 | | 3x^2+4-20=0 | | 11+3x=-0.58 | | x^2*(0,03+0,05*T)=3 | | 4*a=416 | | 6(x+7)+3=11x-5(x-3) | | 23(x−7)=−2 | | 11-8(7-6x)=5(7x)-11x | | 4+4(5x-5)=8-4(2x+1) | | 2x+7x=-3x+17 | | (2-5x)^2=6 | | −7.8(x+6.5)=−25.74 | | (x+2)/3=(x-2)/7 | | 73=14h−2/7 | | x×x=196 | | 6(n+5)=16 | | (2πr^2+4π)/(2πr)=3 | | 535/x=5 | | 535/x=6 |